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PREFACE

In December 1975, the Automatic Data Processing (ADP) Center

of the U. S. Army Engineer Waterways Experiment Statiin (WES),

Vicksburg, Miss., submitted a proposal to implement and evaluate

interval aritnn.etic, a software system for digital computer numer-

ical analysis, ;n the Corps of Engineers' primary engineering

computer--the WES Honeywell G635. The proposal was later expanded to

include the implementation and evaluation of an interval arithmetic

software package on six different computer systems. Engineering and

scientific data problems were selected to be used on each of the six

computerj with the interval arithmetic software.

§ The work was funded by the Office, Chief of Engineers, U. S.

Army, through the Integrated Software Research and Development

(ISRAD) Program, ATll, Engineering Software Research.

This is Report 4 of a series entitled "Implementation and

Evaluation of Interval Arithmetic Software." The other reports

to be published in the series are:
Report 1: The State of the Interval: Evaluation and

Recommendations

Report 2: The Honeywell MULTICS System

Report 3; The Honeywell G635 System
Report 5: The CDC CYBER 70 System

This report was written by Dr. Ronnie G. Ward of the Depart-

ment of Computer Science, University of Texas at Arlington. His

work was performed under Contract No. DACA39-76-M-0247, dated

28 April 1976, and Contract No. DACA39-76-M-0356, dated September

1976, and through support from the University of Texas at Arlington

i supplied directly through organized research funds. (The project

also benefitted from the work of Dr. Darrell Ward at the University

of Texas Health Science Center.) The work concerned implementa-

tion and evaluation of an interval arithmetic software system on
Sthe IBM 370, DEC 10, and DEC PDP-11/70 coptrsystems.

the Dr. J. Michael Yohe, Director of Academic Computing Services,

University of Wisconsin-Eau Claire, developed and wrote the

interval arithmetic softuare package which was implemented on

each of the six computer systems. Dr. Fred D. Crary, formerly

with the U. S. Army Mathematics Research Center, University of

Wisconsin-Madison, developed and wrote the AUGMENT precompiler

which was implemented on each computer system as a front-end to the
i 1



interval arithmetic software package. Dr. Crary also prepared a

series of remarks pertinent to items noted by Dr. Ward in this

report. These remarks are presented in Appendix A; the work in

preparing them was performed under Contract No. DAAG29-75-C-0024.

Dr. Yohe and Dr. Crary are specially thanked and recognized for

their technical contributions and assistance.

Mr. James B. Cheek, Jr., formerly with the ADP Center, WES,

provided initial impetus and guidance for the project. -Mr. Fred T.

Tracy, ADP Center, WES, provided expert advice and technical guid-

ance during the project. Dr. N. Radhakrishnan, Special Technical

Assistant, ADP Center, furnished technical guidance and general

project supervision. The project and the report were monitored

by Mr. William L. Boyt under the general supervision of Mr. J. L.

Neumann, Chief of the ADP Center.

Directors of WES during the project and the preparation of

the report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE.

Technical Director was Mr. F. R. Brown.

Copies of the other reports of the series, computer listiugs

of the interval program and of AUGMENT for each computer system,

and runs of the benchmarks for each computer system may be ob-

tained from the ADP Center, WES.
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PART I: IMPLEMENTATION OF THE 'AUGMENT' PRECOMPILER
AND INTERVAL ARITHMETIC ON THE IBM 370, DEC 10, AND

DEC PDP-11/70 SYSTEMS

1. Introduction

Organization of this Part

Phase I of this project was concerned with installing the

AUGMENT preprocessor [1,2] and the interval arithmetic package

[5,7] on three computer systems -- the DEC System 10, DEC

PDP-1l/70, and an IBM System 370. This Part describes results

of this Phase I activity. Section 2 discusses the experiences and

decisions in implementing AUGMENT on the target machines.

Section 3, in a similar manner, presents the approach and

difficulties in implementing the interval arithmetic package on

the three systems. Section 4 discusses the use of the packages

from a programmer's viewpoint. Limitations of AUGMENT and

possible pitfalls in using the interval package are discussed.

Section S discusses some recommendations and conclusions,

I'
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Summary of Phase I Activities

Accomplishments -

AUGMENT was successfully implemented on the
DEC System 10 and the IBM System 370.

, The Interval Arithmetic package was implemented
on all three target computer systems.

a AUGMENT and the Interval Package have been
tested for correct operation.

aExperience has been gained in using the

packages. Possible pitfalls are discussed.
Problems -

a Due to storage requirements, AUGMENT could
not be implemented on the DEC PDP-II/70.

a The logistics of working with three separate
computer systems simultaneously proved to beI a serious obstacle.

a Debugging the interval arithmetic primitives
in a batch environment is much more difficult
than debugging them on a timesharing system.

7
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2, AUGMENT Implementation

General Information

The implementation of AUGMENT on a computer system is straight-

forward, Eight machine dependent routines (3] must be coded and

executed through a test driver supplied with AUGMENT. The major

problem encountered in implementing the system was that of

working on three separate computer systems simultaneously. The

systems are not physically located at the same site, and they are

not compatible in any respect. This compounds the problem of

transferring material betw-en the systems since it has to be hand

carried and sp)ecially processed on each system.

To illustrate this point, the PDP-11/70 has no software utility

to read foreign tapes. So the choices were to write such a

utility or punch"AUGMENT into cards for loading on the 11. A

utility was written due to the volume of cards involved.

Implementation on the IBM System 370

The distribution tape containing AUGMENT, the text for the

primitives, and a sample program for AUGMENT processing was

received. The last blocks on all three files were "short"

16



blocks, and contained ,0@0,1 as the last four characters. This

caused some problems in procesing the tape. Since AUGMENT has

been installed on a System 370 prior to this project, primitives

already existed and merely had to be checked out.

Subroutine PACK contained a syntax error (unbalanced parens);

MOVHOL incorrectly referenced MINO instead of MINO; PACK

incorrectly referenced 'CHARS' instead of 'CHAR'; ORDER

documentation noted the problem with an overflow when testing the

relative orders which could have been circunvented very cleanly

using a logical IF (compare instruction generated) rather than an

arithmetic IF (subtract instruction generated). Finally, the

documentation for STRWDS [3] is ambiguous (because of the

"if's"). It appears that the routine can be called under

different conditions.. This is confusing to someone who does not

understand AUGMENT internals.

The primitives, after some modification, passed the acceptance

testing of the driver routine supplied. It should be noted that

this routine performs only a cursory check of the primitives.

However, a more extensive testing routine is probably not needed

since the primitives are so basic to the preprocessor that any

errors in them will likely show up rapidly with any use of

AUGMENT. In the interest of completeness, it should also be

noted that AUGMENT routines MAIN and MOVNUM do not end with

S* allowable executable statements on IBM's Fortran H compiler.



AUGMENT was installed on an IBM System 370 running under

OS/1VT. Since job scheduling under this operating system is

based in part on core requirements it was decided to overlay

AUGMENT as described in [3). Without overlaying, AUGMENT would

require 306K bytes of storage using the Fortran Gl level

compiler. With overlaying the root phase requires 84K, the

description phase 76k, and the process phase 146K. This comes to

a total of 230K needed at any one time for AUGMENT. Hence a

region size of 230K is required. Thus, AUGMENT is executed as a

class C job rather than class D improving turnaround

significantly. Explicit calls to effect the overlaying are not

needed since the OS/MYT linkage editor [181 inserts code to

manage the overlay structure at run time. It should be noted

that linking AUGMENT into an overlay structure required 384K

bytes of storage for the linkage editor. This meant that AUGMENT

could only be linked when the computer was relatively idle.

One other point is that upgrading AUGMENT to another version,

for example version 41 to 4J, is rather simple provided the

source files for each of three overlay phases are compiled and

linked separately. A final link is required to create an

executable AUGMENT load module. Experience has shown that

changes can be =de more rapidly if the system is maintained as

described.

8
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AUGMENT's source was maintained on tape at the SYSTEM 10

due to the large pumber of disk blocks required to store it

on-line. TRIM was used to knock off the sequence fields of the

card images, and PIP with a 'I/T' switch removed trailing blanks.

This reduced the disk storage requirements by 60%, but deleting

trailing blanks invalidated Hollerith constants containing

trailing blanks in DSCRIB (AUGSOSOO) and TRNSCD (AUG38900).

The P10 compiler was used on the 10 rather than the F40 compiler

due to the differences in the quality of the object code

produced. This made the PORDDT debugger available which makes

program check out very simple. Using F10 on AUGMENT established a

pattern of using this compiler throughout the project.

AUGMENT required no overlays on the DEC-10 since a virtual

operating system was being used. A total of 109 sharable and 13

non-sharable 512 word pages are needed for AUGMENT which has a

low paging rate.

Since no overlaying was usel, the entire AUGMENT system is

compiled in one execution. Under the F40 compiler, the multiple

BLOCK DATA subprograms in AUGMEN, caused a failure during the

linking operation. Under F10 this problem does not exist.

However, F1O balked at the IF statement (AUGO1S30) in routine

CCNVRT. The CONTINUE on the IF was changed to J-J to circumvent

the problem. Note that the functL on call contained in the IF

changes AUGMENT's state. So the F cannot be deleted. In other

1
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words, the IF accomplishes something useful even though it

appears to be unnecessary. F10 also puts out warning messages

about modifying a DO index in routines GETSYM (AUG74190), CLFAR

(AUG•3255), ENDIT (AUG22930, and AUG2294S), and INDEX (AUG30790).

These are warnings and can be suppressed easily.

Implementation on the DEC PDP-11/70

A first step in the implementation of the AUGMENT preprocessor on the

PDP-11 system was to install and check out the eight

machine-dependent routines in the AUGMENT system (ORDER, MOYHOL,

CCODE, NUMIN, STRWDS, STRCHR, PACK, STRLNG). The machine

dependencies on the PDP-11 were mainly in the handling of A-TYPE

(character) data. The PDP-11 Fortran-F4P (extended Fortran)

Scompiler was available for use. The handling of characters and

Hollerith constants under this compiler was found to be very

unique. The 16 bit words are us.ed to store two characters and are

filled from the low-order end. Thus a two character Hollerith

constant would be stored with the first character in the lower

half of the word, and the second in the upper. This condition

required modifications in the packing and unpacking of characters

in the above routines. Also the indexing of the characters in a

string could not be linear as the storage locations did not

coincide with the order of the characters in the string. After &

Vý 0
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study of the manuals and using test programs to check the

handling of character data, the routines were implemented and

tested using the test driver supplied. As with the System 10,

the ENCODE/DECODE statements were used in implementing the

primitives. Unlike the 10, however, only one record can be read

with these statements on the 11. Therefore, an explicit loop was

built around these statements making the code more lengthy.

With the machine-dependent features of the preprocessor installed, the

next step was to implement the entire AUGMENT system. The source

for the routines was transferred to the 11 via magnetic tape and

each was compiled separately giving a listing containing the size

of the object code for each. The total of the individual routines

came to approximately 60K words, thus making evident that an

overlay structura must he developed to allow the installation of

the system on the 11, which requires a task be no larger than 32K

words.

Since no cross-reference of the calling sequence for the routines was

provided, it was necessary to obtain one. This was done through

the DEC-10 implementation where the routines were also installed.

The cross-reference, along with the source code, was used to find

natural breaking points in the flow of logic for the overlay

purposes.

The root segment for the structure was arrived at first, and consisted

of the main routine; the COMMON blocks, which were located in the

12V]



BLOCK DATA subroutine; and the eight machine dependent routines.

The BLOCK DATA subroutine consisted of a combination of the two

original BLOCK DATA's and the other COMMON blocks used in various

other routines not formerly in either BLOCK DATA. These other

COMMON blocks were added to the BLOCK DATA subroutine to allow

all of the COMMON blocks to reside in the root segment of the

overlay structure. An initial break down of the processor. was

found at the 'INITAL', 'DESCON', and 'PROCSS' routines called

directly from MAIN. it was then necessary for each of these

three segments to contain all of the routines which could be

called from each of the three routines. Working with the

cross-reference alone proved to be too difficult when proceeding

through several levels of calls seeking the routines needed for

each segment. It was therefore found that a more extensive

calling sequence analysis was needed.

A program was written in PL/I which would accept, as input, the current

cross-reference consisting of the name of each routine, its size,

and the names of the routines it called directly. The program

processed the cross-reference by building a structure which was

then traversed producing an exhaustive listing of the routines1114 and all routines which could possibly be called from each. The

output consisted of the above information for every routine, and

the total size of all of the routines listed as possibly being

recursion in AUGMENT between routines QUIT and MOVNUM.

The complete analysis provided by the above program considerably

13
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reduced the task of developing an overlay structure, and after

analysis of the original cross-reference And the above

multi-level calling sequence, a structure was arrived at for the

overlay. The structure consisted of the aformentioned breakdown

below the main routine with each of the three segments further

broken down. Since the amount of overhead incurred by the use of

overlay on the 11 was not certain, the sizes of the segments were

computed soley on the basis of the size of each routine with an

estimated amount of overhead.

when the overlay description was used in an attempt to link the object

modules into a executable task the overlay description was found

to contain too many name3. Therefore the description had to be

reduced by removing common names from segments, where possible,

and moving them to a point in the description such that they

would be path-loaded (see IAS TASK BUILDER reference manual

p.6-4). The search for the common routines was made using the

listings of the routines contained in each segment and working

from the outward segments toward the root, moving common names to

a point above the segments containing them. Upon completion of

this intersection of the segments, the overlay description was

reduced by approximately 50% and another attempt was made at task

building. When the overlay description was processed the task

overflowed the 32K limit and the need for a further breakdown of

the structure was evident.

14



Working from the points in the structure where overflow was taking

place, the description was again revised to the greatest possible

breakdown as shown in Figure 1 (refer to the IAS TASK BUILDER

reference manual p.5-6 for a description of the overlay

description language). Another attempt at task building again

resulted in overflow.

At this point the overlay description was specifying several overlays

for the processing of a single input card by the AUGMENT system,

and the breakdown of the structure was at its lowest point.ITherefore, an attempt was made, through compilation options, to

I reduce the sizes of the individual routines. The code generated

I :by the compiler to facilitate trace back information for

subprogram calls was suppressed and other options were used in an

attempt to minimize the size of the routines. An attempt task

build at this point still produced overflows. Further reductions

in storage requirements were made at task-build time by reducing

the Fortran I/O unit numbers to 1-4; the number of active files

to 3; and the file control system buffer size. Task building

F •failed again however.

Any further reduction of the task size through a further breakdown of

• the overlay structure would render the preprocessor infeasable

because of the amount of time spent on overlaying during the

execution of the system. It would therefore seem that the next

step would require modifications to the AUGMENT source code to

1 15
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reduce the number of routines by eliminating calls to routines
0

and placing the code for them in line. A scan of the AUGMENT

source revealed the following routines as candidates: GETP,

OHFNDC, PUTP, GETL, FHHEAD, OHHEAD, SFENCE, CFENCE, CHHFAD,

CLRNUM, CLTEMP, COLMNS, DMCLR, DMSET, SMWIPE, RVNEXT. Each

routine consist of one or two assignment statements, and/or a

single call to another routine. Modifications to the source

would require first analysis of the flow of logic in the AUGMENT

system and due to the time element this could not be considered,

therefore the installation of the AUGMENT preprocessor on the

PDP-11 was abandoned. However, since AUGMENT produces standard

Fortran, the System 370 and DEC-10 versions of AUGMENT can be

used as host processors for the PDP-11/70.

Another consideration in AUGMENT implementation is the word

size used to represent integers. The PDP-11/70 supports 32 bit

integers, hut this of course requires additional storage over 16

bit integers. There is possibly a problem in routines DOESN and

DOISN with external and internal statement numbers since 16 bits

will only represent values up to 32,768. This value may not be

large enough to accommodate these numbers.

16



.ROOT M4AIN-ORDER-MOVIIOL-CCODE-NUMITN-STRWDS-STRCHR-PACK-STRLNG-BDATA-R1
RI: .FCTR QUIT4!OVNUM- (Cl ,Dl ,Pl,*SFENCE)
Cl: .FCTR PUTP-PST 'OR-PUTI-CLASS-TSTOR-TREINS-TREFND-ALPIIA-(Il.D1)
11: *FCTR *INITIAL-TPCONV-OUMIAKE-STENTR-FDMLAKE-TPMAKE-OHMtAKE-FHMLAKE
Dl: *FCTR *DESCON.,FDCODE..GETI -GETL-GETP-GETSYMI-NTIIR-NXTSTG-PRNTCD-DZ
D2: *FCTR READCD-SMIATCII-TPFIND-TPFND-TPFNDH-TREFST-TRENXT-ECHO-D3
D3: *FCTR ERRADD-GETTYP-NAMEOK-NXTELT-REFNAM-RFFIND-RFMAKE-D4
D4: .FCTR SEQUAL-RCLEAR-DSCRIB-USESTP-STENTR-TPMIAKE-TPTEST-DS
DS: *FCTR CNFLCT-(TSTlENV1)
TSTl: .FCTR *TSTCRD-FDFIND-FUfFIND-FDMIAKE-FHMtAKE
ENVI: *FCTR *ENVAJDD-(TR)$l PRi ,Cof~1)
TRNI: .FCTR *TRNSCD-FDFLDG..ODCODE..OTYPES.OHHEAD-.(*DMOPER,DMtTYP1,DMF1)
DMFl: *FCTR *DM1PUNC..FDARGS-FihIIEAD
OPRi: *FCTR *OPRCRD-ODFIND-OfIFNDC-OiFNDS-ODtIKE-.OHMAKE..OPEROK
COM1l: .FCTR FDFIND-FIIFIND)-PDMAKE-FIIMtAKE-FCNALL- tCNGEN- (CNV1,COM2)
OIVi: .FCTR *CNVCRD-CNVFCN-FHIGIIER-TPCONV
CO?42: .FCTR FCNARG- (*FCNCRD,*FLDCRD-FDFLDP)
P1: .FCTR *PROCSS.OTCONT..EOUATE..PSTOR-.CHKNUM-MKUSED-.(CDI1,SPRi)
CDIl: *FCTR *CRI-LH-LS-EIGT-EPGTY-RTDCI
CD12: *FCTR PUTI-PUTP-READCD-SMtATC"H-TPFIND-TPFND-TPFNDH-CDI3
CD13: .FCTR TREFST-TRENXT-TSTOR-CIIIIEAD-COPYCD-DMCOMIN-DMSMTB-CDI4
CD14: .FCTR DMTYP2-PROCRD-RFNEXT-SNIHEAD
SPRi: .FCTR *SUPER- (*CLT-EMP-*CLRSTK,DCIl COM3)

COM3: .FCTR CLASS-GETI-GETP-TRENXT- (*SETXQT,TSTOR- (ENDl,COM4))
ENDi: .FCTR *EDTCLA-RFTCEC-LA-LNMDCS-EEDED
END2: .FCTR DECNAM-DECOUT-DECSTR-DMCOMfN-DMiSMTB-DMtTYPZ -ESN- INDEX-END3
END3: * CTR OUTLNF-RFERAS-RFNEXT-SMIHEAD-SMWVIPE-USED-VERSN-RETGEN-END4
END4: *FCTR GETL -GETSYM- PUT I -CHEAD- COLMNS -COPYCD- CSTYPE -FDNAME- ENDS
ENDS: *FCTR LOADA-MOVPTR-MOVTMIP-ORNANIE -OUTL IN- OUTPTR- OUTSTR- END6
END6: *FCTR RETEMP-RLN-SOE-TYPEOF
COM4: *FCTR ALPHA-NXTCHR-NXTSTG-TREFND-TREINS-ICNVRT-SMFIND-COMS
COMS: .FCTR SMIME- (DCT I ,COM.6)
DCTl: ."CTR *DCTYPE..GETSYM..ADDIMN-PUTI..PUTP
COM6: *FCTR TMIPLCT-LTRNIJMk- (*DCSUBR-*COPYCD,PUTI- (COM7,DCF1) ,CMfNl)
DCF1: *FCTR *PcFrN..PUTP..STFNTR
CO?47: *FCTR GETSY~I- (DCXTRN-PUTL-GETL,ADDIMIN-PUTP- (*DCDIMtN,COM3))
CM18: FCTR CIIFIND-rflIIEAD-CHIBLAKE- (*LCLGBL,DCCOMN.CADD)
CNll: .FCTR GETL-OHIFNDC-QHFNflS-SMATCH-OUTLIN-OUTSTR-SCANNR-STRPTR-CMIN2
04112: *FCTR (*STD0OCPYREM,CN1N3')

CMN4: .FCTR CCNVTR-COLM-NS-COMIPTL-COPYCD-CSTYPE-FDNAME-GENEXP-GENOPR-CMINS

CMNS: *FCTR MIOVPTIR-MOVTMIP-NCLOSE-NTRLIN-ORNANIE-OUTPTR-PARSE-PCNVRT-CMN6
CMN6: *FCTR PFETCH-PýITCH-POP-PUSH-RETEMP-RFLINK-STFCN-STOREA-T'YPEOF-CMIN7
OWN: .FCTR PUTI-CNVFCN-(*CTNPT- ET-ýCRDOIK-METl
STF1: .FCTR *STIF.-TPFIND..TPFND4LOADA..(*IFINITRECOG-STCl)
STC1: *FCTR FDFLDG-OTTYPES-CLRSUB-CLTEMP- *GENTST..OTGOTO..*CPYREM..STC2
STC2: *FCTR C*GENCOD-PUTI-(*STCALL.*STREPL),*STIO,*STRETN)

*END

Figure 1. PDP-11/70 AUGMENT Overlay Description



Testing

Testing of theAUGMENT primitives was accomplished using the

test driver supplied with AUGMENT. On the System 370, the

primitives were checked through hand simulation. On the DEC

systems', the primitives were verified using dynamic debuggers

[12,13]. Testing of AUGMENT itself was done using the test

program supplied with AUGMENT. No problems were encountered in

processing this program. There was, however, a misunderstanding

in that the AUGMENT output from this test is not executable. The

results cf testing the primitives is included in the appendix.

During use of AUGMENT several problems were noted. Tables

for blank common were not being initialized properly and since

the System 370 does not clear memory prior to executing a

program, some error messages were issued by AUGMENT when there

was no error. This has been corrected by Dr. Crary in version

4K, Version 4K also corrects a problem of not recognizing DATA

statements properly. This problem was noted on the DEC System 10

and IBM System 370, but only a "comment" type error message was

produced so it was ignored.

H
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3. Interval Arithmetic Package Implements o..

General Information

The interval arithmetic package for the 1108 [S] was received

on tape and restored to disk on the System 370. A careful study

of this package and 1108 manuals [15,16] revealed that an

overwhelming number of machine dependent features are employed in

the coding. These dependencies have been documented but are not

included here since a more portable version of the package

(INTERVAL II) is now available. Because the package would not

convert easily to other machines, and since this project dealt

with three distinct machines, it was decided that time would not

be wasted in adapting this package.

Attention was turned to implementing the machine-dependent

primitives required by INTERVAL II. The discussion that follows

is concerned with the implementation of the arithmetic primitives

which perform directed roundings. These were coded from Dr.

Yohe's paper [4]. The source listing of the INTERVAL II

primitives and constants are included in the appendicies for all

three machines.

Making corrections to the INTERVAL II package deserves comment.

The package is written using BPA and EXTENDED data types and

therefore must be processed through AUGMENT. The resulting

Fortran requires significant editing to tune the package. Thus,
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changes to INTERVAL II, such as corrections, can be made at

either the'AUGMENT input level or the AUGMENT output level. In

view of the tuning required, it is recommended that changes apply

to the AUGMENT output as well as input. This avoids having to

reprocess through AUGMENT and retune the package.

Implementation on the DEC System 10

The five primitives are coded as one program with the entry

points of BPAADD, EPASUB, BPAMUL, BPADIV, BPACEB. The Macro

(assembly langua[e) code was designed for communication with code

generated by the DEC-10 P10 Fortran Compiler. Code compiled by

the P40 Compiler will not interface correctly as the calling

sequences are different. This is documented at the beginning of

the primitive code.

The ACC value is assumed to be 28 in all cases of calls to

BPACEB. There was no extensive informrtion on error bounds for

the DEC-10 thus double precision results are assumed correct to 28

bits or one more bit than single precision.

The primitives were coded directly from the paper "Roundings in

Floating Point Arithmetic" by J. Michael Yohe. There are some

minor problems that should be pointed out for anyone who would

code from this paper directly. The occurrences of P÷1 in lines

30, 4, IS, and 16 of table I (p. S80) should be replaced by P.

20



as the stated constant is not the one that is exactly halfway

between max and the real number whose exponent is E?4AX÷l and

fraction is B-1. There are several typographical errors which

may slow down the coding procedure significantly. Fortunately

only one such typo occurs in the algorithms portion. It is an

obvious error in Step 6 of the rounding algorithm.

in implementing the algorithms one should check exponent

overflow first when considering the rounding options applied to

circle (0). If this is not considered first, one can easily

implement a round toward zero when in fact the option dictates a

round from zero.

The DEC-10 does not have an infinity representation. Thus

positive infinity is just the largest positive number or

377777777777

in octal and

,400000000001

for negative infinity,

The DEC-10 presents some interesting problems of manipulation

as negative floating point numbers are in the form of 2's

complement notation for the fraction and l's complement notation

for the exponent. The approach taken is to convert numbers to

sign magnitude form for the algorithms and then convert back to
DEC-10 representation upon exit from the primitives. Since the

DEC-l0 has no sign magnitude add instruction one must adjust to

2's complement form prior to and possibly after the addition.

A final obstacle that should be noted on the DEC-10 implementation[ !is that of type checking on subprogram parameters. INTERVAL II
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represents intervals as REAL dimensioned by 2. In utilizing the

package, an AUGMENT'user must also declare the interval type as

REAL dimensioned by 2 and not COMPLEX as on the System 370.

It is not possible to suppress type checking under the F10

Compiler.

Implementation on the IBM System 370

Before implementing the primitives on the System 370, several

problem areas had to be resolved. A decision had to be made with

regard to the base of the machine. Although information is

stored internally in binary, the exponent in floating point

numbers represents a hexadecimal move on the hex point. An

attempt was made at coding the algorithms of Yohe's paper using

beta as 16, p equal to 6, and m equal to 3. The algorithms

require m to be at least 3 and this meant that the A register

had to carry 9 hex digits. Since a single 370 accumulator can

only accoamvdate 8 hex digits, significant coding problems were

continually encountered. The base was changed to 2, p to 24,

and m set at 7. The algorithms were then coded successfully

with the A and U registers as single 370 accumulators

(contrary to the remark on page S79 of the paper).

This change to base 2 introduced some complexity into the packing

and unpacking operations. The hex exponent was converted to

I" 22
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binary, and a normalized hex number may not be a normalized

binary number. Since an unnormalized number could be passed into

the primitives, at the beginning of each algorithm a normalizing

loop appears which shifts the fraction digits to the left and

decrements the value of the exponent until normalization is

achieved.

The individual algorithms presented little or no difficulty,

after several problems encountered in the System 370 were worked

out. The first of these was found in the multiplication

algorithm. After a 32-bit multiply takes place, the second half

of the 64-bit product contains a data bit in the sign bit

portion. Accordingly,the result should be left shifted one bit

to maintain the algorithm's assumption about the location of the

binary point. In algorithm 4, division, the System 370 div4 de

places a sign bit in the sign bit portion of the remainder. It

is desirable to place a data bit in this position so that data

bits in the AX register will be contiguous. The result must be

left shifted one position and the sign of the remainder

eliminated.

'The first difficulty encountered in algorithm S was a misprint

in the article. In Step 6 the instruction printed as

"EA-FMIN**-2I should havo read "EA-EMIN-2". Testing the rounding

options for this algorithm was a problem, in that a number of

different cases had to be considered for rounding option 4, round

23
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to the nearest machine number. At first only the two cases of

this option which rounded toward zero were tested and a default

to round away from zero would be taken if these were not found.

However, the case which states that if the absolute value of the

result is greater than or equal to MIN and the first digit of the

second register is a zero implied rounding toward zero, without

taking into consideration the size of the exponent. When the

exponent is greater than MAX, a rounding away from zero is called

for. So a test is made of the exponent's value preceeding the

testing indicated in Step 6.

Also in algorithm S, extra code was added at Step 10 since

the System 370 would expect an exponent expressed to move hex

points rather than bits, It is necessary to ensure that the

exponent be a multiple of 4. Shifting the result and

incrementing the exponent until this is achieved and dividing the

exponent by 4 will generate the proper representation. Note that

this causes the desired rounding to take place again if non-zero

bits are shifted out.

The BPACEB algorithm required a 64-bit addition, which is not

provided on the system 370. The code, therefore, had to make use

of temporary storage locations to perform 32-bit additions, save

the carry-out of the answer, and then add it to the upper 32-bits

of one of the addends before continuing the addition. This

accounts for the lengthiness of this code.
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Both the checking and debugging of these routines were hampered

by the fact that the Syitem 370 accepts only batch jobs. There

was no way to interactively debug, and much time was spent

desk-checking the prograz.• %Ad using Fortran subroutines to print

values at various points in execution. The cases in Table I were

of great value in proving the validity of the primitives, but

difficulty was found in producing correct test data with which to

work. Often one would think that the routines were wrong when

actually the test data was incorrect.

As a final note it is recommended that the System 370 primitives

be extensively optimized before going into any production use.

They can benefit from much tuning.

Implementation on the DEC PDP-11/70

In the PDP-11 a floating point number is stored in two consecutive

16 bit words. There is a 1 bit sign, 8 bit exponent, and a 23 bit

fraction. Since all real numbers are assumed to be normalized

the first bit of the fraction is not present in the floating

point representation. This bit, called the hidden bit, plus the

23 fraction bits gives a 24 bit fraction. In the BPA routines the

hidden bit is placed in the fraction when the number is unpacked.

This makes m-7 (number of exponent bits) and p-2 4 (number of

fraction bits) in the algorithms. The hidden bit is removed when
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the number is packed back into floating point format in Step 11

of Algorithm 5.

To implement the HPA algorithms on the PDP-11 three special

routines had to be written; a 64 bit right shift, a 32 by 32 bit

multiply, and a 64 by 32 bit divide. Since the PDP-l1 is a 16 bit

machine it takes two consecutive registers or words of memory to

represent a floating point number. In the discussion that follows

the A,X,U, and Y registers are actually two consecutive registers

or words.

The 64 bit right shift routine takes the A and X registers as a

single 64 bit register and shifts it right n places. To do this

the A register is saved in Y then shifted right n places. The

high order bit of the X register is placed into the low order bit

of Y and then the X register is shifted right n places. The Y

register is shifted left 31-n places to get the bits that were

shifted out of A. These bits are then ORed into the X register.

A routine that multiplies two 32 bit numbers and produces a

64 bit product was written for BPAMUL. The A register is saved

in Y and then cleared. Then U (the multiplier) is shifted right 1

bit at a time. If the bit shifted out is a one then Y is added to

A and then AX (the product) is shifted right one bit. If the bit

shifted out of U is a zero the Y register is not added into A,

but AX is still shifted right one place. This continues until all

32 bits of U have been shifted out and tested.

For BPADIV a divide routine was written that divides a 64 bit

dividend by a 32 bit divisor and produces a 32 bit quotient and

2
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a 32 bit remainder.-The 64 bit dividend in the A and X registers

is shifted left one place, putting a zero into the low order bit.

The 32 bit divisor in U is subtracted from A. If the result is

negative the divisor is added back in. If the result in A is

positive the low order bit of X is changed to a 1. This sequence

of shifting and subtracting is repeated 32 times. Then the A and

X registers are exchanged so the remainder is in X and the.

quotient is in. A.

Testing

Testing of the interval package on all three machines was

carried out in a similar manner. However, debugging of the

primitives was much simpler on the timesharing systems. The test

driver supplied with the package was run successfully and

produced satisfactory results on all three machines. Output from

this test is included in the appendix.

Additional testing was made by executing Dr. Yohe's factorial

problem [S] and Plat Map problem (illustrated at the conference

in Vicksburg). The FFT benchmark program was also run as a test

case. Output from running all three of these tests on all three

machines is contained in the appendix. FFT run under normal

arithmetic was used as a test comparator, and the output of the

factorial problem as well as the Plat Map problem were available
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from the 1108 to use as comparators. All machines are producing

satisfactory results for these problems.

As a guide to anyone else who implements the primitives using

Dr. Yehe's paper it should be pn>inted out thIat extensive testing of

the primitives can be accomplished using Table I in the paper.

Testing each one of the cases in that table to see if the proper

results are produced generates a secure feeling that the

primitives are coded correctly. A general driver program that

exercises the p~rimitives against this table is highly desirable.
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4. Use of AUGMENT and the Interval Package

Using an Interval Data Type

Using AUGMENT for an Interval data type is a simple process

and usually requires a minimimal number of changes to a user

program. The number of changes that a programmer will need to

make depends upon the description of the new data type given to

AUGMENT. However, the description is limited to what the user

has as library routines supporting the operations in the new data

type. To define what is meant by the operations in the new data

type, examine the addition operation. When doing an addition

under standard data types, like integer or real, the machine has

hardwired instructions which carry out the operation. When

defining a data type not supported by the machine hardware, a

software implementation of it must be made. The implementation

is in the form of a subroutine or function which does the

required operation or convarsion. This is where the supporting

package routines come in. All conversions, functions, and

operations must be defined in the form of subroutines or

functions where operands are passed to it and the results of the

operation are returned.

Once all the operations, functions, and conversions needed by the

new data type have been defined, information must be given to

AUGMENT through a description deck. In the description, the

symbol or name of each operation or function to be recognized and

processed in the user program must be defined. An example would

F
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-be "' for the multiplication operation and 'SQRT' for the square

root function. Next, the name of the supporting package

subroutine or function which will do the same operation on the

new data type must be defined. A specification of the types of

the arguments passed, the priority of the operation, and the type

of the argument returned must be defined. When all the

operations and conversions have been defined, AUGMENT is ready to

process the user's program for the new data type,

Before the writing of the description or the library routines,

another aspect of the new data type must be defined, namely the

data structure of the new data type. On the IBM 370, integers

and single precision floating point numbers are stored in one

word of memory. A complex number is stored as two words of

memory with the first word containing the real part of the number

and the second word containing the imaginary part while a double

precision floating point number takes up two words of memory for

the number by itself. When defining a new data type, not only

must the operations be defined but the way a new data type is to

be stored in memory must also be defined. In the case of

Interval Arithmetic, each previously defined real variable will

he stored as two real numbers which are the lower and upper

endpoints of the Interval number. This can be done in many ways

using various standard data type storage definitions to describe

the new data type's storage requirements. The descriptions which

could be used are REAL(2), COMPLEX, INTEGER(2), or DOUBLE

PRECISION because each of these types are allocated two words of

memory. AUrME defines the storage for each variable of the new
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data t'pe to be a multiple of a defined standard type which the

user supplies in the description to AUGMENT. For example, an

INTERVAL array A(lO) when defined by ccoplex storage would be

declared COMPLEX A(10) after being processed by AUGMENT. If an

Interval was defined as REAL(2) then the declaration for the

array A(10), after being processed by AUGMENT would he A(2,l0).

This definition maintains a column ordering hierarchy which

Fortran uses. The problem of storage is simple as long as the

"data types are the same in the description of the data types and

the way they are defined in the library routines. If they are

not, then some compilers will generate code that gives errors

because the parameter types of the calling program and the

subroutine do not match at run time. Others may. at run time,

make standard Fortran data type conversions on the parameters

when they are passed or returned. This occurs with the DEC 10

Fortran 10 compiler. An example of this is found in the Fast

Fourier Transformation problem that was implemented. An Interval

was described to AUGMENT as COMPLEX but the supporting package

used REAL(2) to represent an Interval. This caused the loss of

i •the right endpoint upon return to the calling program. The IBM

370 Fortran compiler makes no check on the parameters. So as

long as equal storage is defined in the main program and in the

subprogram no error occurs,

To change a standard type variable to a new data type simply

insert a statement into the user program which is similar to

other type declaration statements in Fortran where the type name

is followed by the list of variables to be given the type.
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However, there are some small limitations when using AUGMENT to

convert a program from a standard data type to a new data type.

One of these limitations is that no tabs may appear in the source

deck because AUGMENT does not process or recognize tabs in the

source statenents, An error results if one is encountered.

Other limitations are that AUGMENT does not process EQUIVALENCE,

DATA, READ, or WRITE statements. AUGMENT marks these statements

in its output with "comment" messages:

C ..--- EQUIVALENCE STATEMENTS ARE NOT PROCESSED BY AUGMENT

C =-=-- DATA STATEMENTS ARE NOT PROCESSED BY AUGMENT =-s=o=

C ---=- NON STANDARD VARIABLE IN INPUT/OUTPUT LIST =--a=

This does not mean that these statements cannot be used. It

means that AUGMENT does not make any conversion of these

statements. Therefore an understanding of the data structure of

the new data type is needed to ensure the correct alignment of

storage and correct input and output cf the new data type. For

example, if A is an interval data type on the DEC-10,

WRITE (6,50) I, ACI)

SO FORMAT (lX,14,SX,E14.7)

would have to be recoded by the programmer as

WRITE (6,2S0) I, A(lI),, A(2,I)

2S0 FORMAT (lX,14,SX,lH(,Fl4.7,1H,,El4.6,lH))

To input or output a variable with an interval data type will

W
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mean changing the I/O statement to read both endpoints or write

both endpoints. On the I/O statement, a list would have to be

made of the variables using a subscript value for variables that

are scalar if the definition of an interval was REAL(M). If the

S~definition of an interval was complex then Fortran would be able
to take care of the input and output of both endpoints with just

the variable name. Either way, the format specifications would

have to be changed to allow for an extra value to be read or

printed for each variable in the variable list. With a READ

statement the input data would have to be reformatted and changed

so as to represent an interval number.

The programmer must be keenly aware that to change a standard

variable in an EQUIVALENCE statement to a new data type may mean

changing the array size of the variable it is equivalenced to.

For other statements, AUGMENT handles the extra subscript and it

becomes transparent to the user. Changes to other statements may

have to be made if the supporting package routines are not

available for the particular data type desired. As an example,

the Fast Fourier Transformation (FFT) generates a set of complex

coefficients for a polynomial. Since there was an interval

package library for a REAL interval number but not for a COMPLEX

INTERVAL number, the complex number was simulated by declaring

the old COMPLEX array as a REAL array dimensioned (2,N) were N

was the old array size. This, by itself, meant changing some of

the code to allow for the subscripts and change the logic from

storing one complex number to storing two real numbers. For

example it is now the programmer's responsibility to keep track

of the real and imaginary parts separately. The FFT statement
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WP(L) -CMPLX (XY)

was recoded into interVal as

WV (1, L)-X

WP(2,L)-Y

This change to the standard non-interval program would still maintain

the logic of the algorithm, provided the change is made correctly.

Once this correction was made, the change from the standard types

to interval were transparent except for the I/O statements and

EQUIVALENCE statements, The reason this special change was made

instead of writing another set of library routines to handle a

complex interval was that the time needed to write the new library

routines was much greater than the time needed to modify the logic of

the one FFT program which was to be converted.

Two other points on using AUGMENT are pertinent. One, the

implied comparison to zero used by the three branch IF statement:
:t4

IF C arithmetic expresion ) labell,label2,label3

bmust be changed to the logical if statement (more than one may be

needed):

IF ( arithmetic expression .EQ. 0 ) GO TO label-
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This case is flagged by AUGMENT and is easy to spot and correct.

The second point involves the manner in which AUGMENT generates

type declaration statements. To illustrate, consider an INTEGER array

that is dimensioned by an INTEGER variable in a subprogram. The AUGMENT

declaration would be flagged by the IBM Fortran compiler with an

"order" diagnostic. That is,

C ..... GLOBAL VARIABLS-----

INTEGER LABEL,(NRARG), NRARG

***** 01) (CODE) ORDER

Two easy solutions are to dimension the array with a constant

such as one (1), or to rename the scalar INTEGER variable as

KNARG for example.. This second solution is valid because AUGMENT

produces an alphabetical list of the variables in the generated

declaration.

On a final note, when a run time error occurs, it is usually

detected and printed in INTRAP. The reader is referred to the

appendix for an example of this. The output, however, is

difficult to relate back to the AUGMENT input for a program of

significant size. It is believed that AUGMENT's output will have

to be used in debugging. This means that one should be familiarI
with the individual routines in INTERVAL II. It is useful to haveI a list of routine names, a brief description of their function

and parameters. The reader is referred to [S, Table 1, pp.

78-79] for an example list for the 1108 package.
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.5. Recommendations and Conclusions

The AUGMENT preprocessor and the INTERVAL II package are

working products. Moreover, they are portable to a great extent

with the exception of the machine-dependent primitives. However,

the coding of the primitives is well defined. Specific

reconmendations include the following:

1. AUGMENT can be implemented on a small storage

machine vith suitable restructuring and mod-

ification. Much code can be eliminated that

would significantly reduce the core requirements,

2. It is belie-,ed that AUGMENT and INTERVAL II

machine-depenlent primitives can be made

machine independent to a great extent.

3. The interval I/O package (6] is probably a useful

t;ool to use in conjunction with INTERVAL II in

light of the confidence a programmer has in the

Fortran I/O system. This package should be

implemented on the System 370, DEC-10, and

PDP-11/70.

4. As noted earlier a general driver progrAm that

exercises the INTERVAL II primitives Is highly

- desirable.
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PART II: EVALUATION OF INTERVAL ARITHMETIC ON THE
"IBM 370, DEC 10, AND DEC PDP-11/70 SYSTEMS

6. Introduction

Organization of this Part

The objective of Phase II of the project has been to

evaluate interval arithmetic on the DEC System 10, IBM System

370 and DEC PDP-11/70 computers. Interval arithmetic is a

useful tool in the analysis of algorithms and hardware [19]. The

quality of the above systems in terms of accuracy is highlighted

by interval arithmetic results on the benchmark programs.

Inconsistencies and weaknesses in hardware design are most apparent.

With the above in mind, this Part has been oiganized as

follows. Roundoff and truncation error as pointed out by

running Dr. Yohe's benchmark programs is discussed first.

Results discussed here relate to accuracy information supplied

in later sections. Next, the results of the benchmark testing

are discussed. Following, a comparison of the three machines

is given in terms of the benchmark program testing. This Part

ends with recommendations and conclusions.

37

I



Summary of Phase II Activities

Important Observations -

* The DEC System 10 is superior to other machines observed
in both interval arithmetic and normal ý?loating point
arithmetic.

* The hexadecimal point move employed by the IBM System
370 in its floating point representation severely
hampers the nachine's ability to generate accurate
results in single precision arithmetic. This is
reflected in the interval arithmeti: r6sults.

* Using interval arithmetic is made simple because of the
AUGMENT preprocessor.

Interval arithmetic, including AUGMENT use, will increase
processing time by as much as a tactor of 50. This is
not so on the PDP-11/70 because the time needed for
normal aTithmetic operations is large anyway.

Problems -

* With the increased storage required for interval
arithmetic (a factor of 2) and considering the PDP-ll/70
storage limitations, it is doubtful that problems of
significant size can be solved on this machine.

Although testing of the INTERVAL II package has been
txtensive, a high degree of confidence in the validity
of the results has not yet been established. This should
change with more extensive use of the system.

* Use of AUGMENT output in debugging is mandatory and
is complicated by not having a convenient method of
tying the AUGMENT input to its output.

* Interpretation of interval widths is difficult when
the situation is not obvious. Guidelines based on
practical experience are much needed in this area.
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Addendum to Part I

Further use of AUGMENT [1] since the writing of Part I has

revealed two additional comments. One pertains to using AUGMENT

with an interval data type. On the DEC System 10, type INTERVAL

is mapped to REAL dimensioned by two, and is mapped to COMPLEX

on the IBM System 370. AUGMENT on the System 10 incorrectly

handles the following declarations:

INTERVAL Rl,R2,RlRPM

REAL RRl,RR2,RR1RPM

It does so by failing to produce a declaration of the form:

REAL RI(2),R2(2),RlRPM(2)

However, on the System 370, AUGMENT generates correct results.

That is:

COMPLEX RI,R2,R1RPM
REAL RR1,RR2,RRIRPM

The other remark concerning AUGMENT use applies to

debugging a program processed under AUGMENT. AUGMENT maps

operations on the new data type to calls in the supportingI package. It does not, however, relate the output generated

back to the original source. Since the mapping of source to

output is not on a statement per statement basis, debugging is

an intolerable task. For example, PRINT statements to check

intermediate results between calls on the supporting package
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cannot be inserted in the original source program. Thus, the

programmer is forced to use AUGMENT's output. This notwithstanding,

and unavoidable, it would be desirable to have an optional

listing feature such that when turned on, a source statement

would be printed followed by the sequence of statements produced

from it. The programmer would still be required to work from

AUGMENT's output f-ile. However, a listing of this nature would

simplify its use.

Part I of this report fails to mention that the DEC System

10 has no double precision Arcsin and Arccos (DARSIN and DARCOS)

routines. The single precision routines ASIN and ACOS were used

in implementing INTERVAL II.

Further testing of the INTERVAL II package on the PDP-11/70

has revealed an error in the INTERVAL II constants THPI,

EXPMNA, and FRACBD. The new values for these constants on

the PDP-11/70 are as follows:

THPI /"31371641026/

EXPMNA /-88.028/

FRACBD /"000000046000/

The latter constant invalidated the arithmetic results of the FFT

benchmark using interval arithmetic on this machine. A revised

version is available at the Waterways Experiment Station (WES).

Fortran under the PDP-11/70 will not permit the printing

of REAL variables using octal output format. ThG same holds

for input using the READ or DATA statements. This has been a
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persistent problem not only in implementing the INTERVAL II

package and its primitives, but in the testing of the benchmark

programs.

In relation to this problem, values of type REAL must be

SQUIVALENCEd to, INTEGER variables for input/output in octal.

However, the 11/70 stores 32 bit integers in memory with the

low order 16 bits above the high order 16 bits. This ordering

is preserved in octal input/output. Hence, real values must be

interpreted with the sign and exponent flanked on either side

by fraction digits.

4
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7. Roundoff and Truncation Error

Interval arithmetic can highlight roundoff and truncation

error in a computer. This has been reported on by Dr. Yohe [19].

It is well known that the order in whict the terms of a

summation are added can affect the accu-aL) of the result.

When the sizes of the terms vary significantly, interval

arithmetic will give an excellent idea of the effect of roundoff

error. Computer output from all three systems was produced for

the sum:

i-0

for several values of x ranging from -13 to 11. In summing

forward (largest terms to smallest), the interval sums on the

DEC System 10 are as wide as .28 x 8- . SLmming backwards the

interval sums are no wider than .28 x 8"8. This difference

in the interval widths underlines the effect the order of summation

can have on accuracy due to roundoff eTror. This is even more

true when considering the System 370 where the forward sum interval

widths were as high as .816 x 16-4 and the backward sum widths

were up to .46 x 16

Throughout the remainder of this report the reader will

note significant differences between interval widths on the

System 370 and the System 10 (or PDP-11/70). This discrepancy
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i is directly attributable to the hexadecimal point move employed

in floating point representation on the System 370.

For purposes of illustrating this point assume that we have

two machines, both capable of representing four (4) bit

fractions. Furthermore, suppose that the first machine's

exponent value implies a binary digit nmove on the fraction, and

the second machine's exponent value implies a hex digit move

on the fraction. After an arithmetic operation, but before

rounding occurs, assume a result of .000112 is developed. In

the terminology of [4] for the first machine we have eAa- 3 ,

the fraction portion of the A register as .1100, and the X

indicator off. For the second machine, eA=0, the fraction

portion of the A register as .0001 (or .116) and the rounding

indicator X on.

Assume an upward directed rounding, and examine the

results of rounding. For the first machine the X indicator is

off implying the machine can exactly represent the result.

Thus, rounding is not done and has no effect. For the second

machine, however, the indicator X is on, and rounding wouid

occur yielding a result of .001V. A downward directed rounding

on the first machine would yield the same answer, but .00012V on the second machine. From this analysis it can be observed

why the System 370 produces wider intervals than the DEC SystemV 10 and the PDP-11/70.

This fact also influences results in normal floating

point arithmetic. In general one can expect the System 370 to
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produce less accurate results than machines which have a bit move

on the fraction.

On the preceeding summation problem, the forward and

backward sums were also produced using normal arithmetic.

The widest discrepancy between the two sums on the System 10

was . x 8"8, and B16 x 16-5 on the System 370. Again the

hex point move on the fraction came into play. In summary,

error control on the DEC System 10 and PDP-11/70 is tighter

than that on the System 370.

To see how serious roundoff error can affect a computation

we again tuYn to a benchmark program supplied by Dr. Yohe [191.

In computing the roots of a quadratic equation, it is well known

that blind application of the quadratic formula can yield

very inaccurate results. Interval arithmetic can show just

how bad the error can be in the case where 4ac is small

compared to b2.

Runs were made applying the quadratic formula on the three

systems in question. The smaller root was computed using both

the quadratic formula and by dividing the larger root into c/a.

The roots were al:o computed using normal arithmetic in addition

to interval arithmetic.

Although several sets of values for a, a, and c were used,

for purposes of illustration between the machines, we will

consider the case where:

9 4
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a - .186264515 x 10.8

b-i.

c - 1.

Floating point arithmetic on the System 370 produced the smaller

root value as 120.0 using the quadratic formula. Note, that

the System 10 yielded a value of -2 for the same case. It turns

out that both values are nonsense, but the magnitude of the

error on the Systen& 370 is appalling. The result does not

even have the correct sign. The System 10 value is off only

by a factor of 2, and at least it has the correct sign.

The interval results are even more interesting. The smaller

root computed via the quadratic formula and interval arithmetic

yielded f-16.,2S6.] on the System 370, and [-4.,0.] on the

Systexa 10. These intervals are uselessly wide, but in regard

to algorithm analysis, they demonstrate dramatically how

unstable this algorithm is, especially on the System 370. The

division algorithm is very stable considering the values

processed. On the System 10, the left and right endpoints are

consecutive machine numbers--[576377777777 8 ,576400000000 81,

which is the best possible interval that can result from an

inexact computation. Even the System 370 produced an acceptably

narrow interval--[C1100001 1 6 ,COFFFFFO 1 6 ].

In his paper [19], Dr. Yohe also illustrates the effects

of a design flaw in the Univac 1110. That computer truncates

the addends (presumably) to 27 bits before performing an add
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or subtract. The illustration is made by using a contrived

constant of 2-27 and subtracting it from 1.0 twice. On

the 1110, the truncation of 2-27 down to 27 fraction bits

(after binary point alignment) results in subtracting zero from

1.0 twice. This difference defined the first term of a sequence

xl, and further terms were computed using = 2 forxi x1 .o

i-2,3,...,40. Finally, to observe the effect of the truncation

error, the xi's were summed from the left and the right. The

results of running this same analysis on the System 10,

System 370 and PDP-11/70 are available at WES.

Analysis of the output yields some interesting results

about floating point arithmetic on the three computers. To

begin, compare the System 10 with the Univac 1110 [19].

Both machines have 36 bit words with an internal floating

point represeatation consisting of a sign bit, an eight bit

exponent, and a twenty-seven bit fraction. Hence, the constant

2-27 that was used on the 1110 is valid for illustrating the

same point on the System 10. However, a study of Appendix C shows

that the System 10 produced a value of approximately

25.6672510 instead of 40.010 as the 1110. It has been pointed

out that the 1110 truncates before adding or subtracting and

this was the design flaw. However, on the System 10 a double

length accumulator is used in arithmetic, and so the subtraction

of 2-27 from 1.0 does not yield 1.0. Note, also, that the

System 10 normal arithmetic value fell within the interval
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arithmetic value for each case. Interval arithmetic on the 1110,

however, produced an answer far better than the 1110 floating

point arithmetic.

The critical point here is that even though these two

machines have essentially the same internal representation,

normal arithmetic results on the System 10 can be expected to

be more accurate since greater precision is used in actually

performing the arithmetic. Both machines' interval packages

can be expected to perform the same (disregarding extended

precision functions that are used).

This example permits us to gain more insight into System

370 arithmetic. Specifically, it reveals that 40.0 was

produced as the sum in normal arithmetic, and unexpectedly,

the interval analysis also yielded an unacceptably wide interval--

[22.6668210,40.0l0]. Since the System 370 only has 24 fraction

bits, the use of the constant 2-27 may be questioned. However,

in normal arithmetic a four bit guard digit participates

in addition to the 24 fraction bits. One would think that the

28 bits combined would accomodate the value -27 subtracted

from one. They would if the Systpm 370 exponent value moved

a binary digit in the fraction! The hex digit move on the

fraction once again causes unacceptable results to be produced.

Recall that a normalized one would appear as .10000016 with

an exponent of 1. The value 227 would appear as .10000016

with an exponent of -6. Alignment of the hex points before
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subtracting causes the non-vero digit of 2-27 to be right

shifted. It is .clearly rhifted out of the guard digit. The

value of having the guard digit is lost. Notice that the

three zero bits leading the fraction of 1.0 are not even used

in the arithmetic! In fairness, however, it is possible to

devise a constant such that the hex digit move on the fraction

does not override the utility of the 4 bit guard digit.' The

System 370 designers at least had it over the Univac 1110

designers in recognizing the need for some additional bits of

precision. But they more than made up for this in designing a

hex digit move on the fraction.

On the PDP-11/70 at least one additional bit of precision

is used in arithmetic and a constant of 2-24 will not produce

the same effect as the corresponding constant did on the 1110.

However, a constant of 2-25 causes normal arithmetic to produce

the value of 40., and interval arithmetic to produce the value

of 40.0 on the right endpoint. The value of 40.0 on the right

endpoint is explainable due to the upward directed rounding.

On normal arithmetic, however, the 40.0 could only result by

one of two things. Either there is only one additional bit

of precision used, or if more than one is used, the CPU

performs a rounding operation. This operation is available

on the DEC System 10.
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8. Benchmark Testing

Recommendations for error and sensitivity analysis of

algorithms can be found in [19]. Primarily, error in an P!gorithm

occurs due to data sensitivity. A given algorithm can be

pronounced reliable if it produces acceptably narrow intervals

for several representative sets of data. Subsequently, however,

there is always the fear that there exists data for which the

algorithm is sensitive to. Such being the case, in a production

environment where a particular situation dictates that accuracy

ts of critical importance, interval arithmetic should be used

to confirm the validity of the results. This is especially true

if the reliability of the algorithm has not been established

with analogous data.

As pointed out in [19], if an algorithm generates unacceptably

wide intervals for a given set of data, that algorithm should

be examined for data sensitive opera'ions. These operations

can be located by printing intermediate results to discover

where accuracy is lost.

Once such perturbations are found, the programmer m~y

consider one of several methods in correcting the problem [19]:

1. Is there an equivalent, but more stable
algorithm which can be used?

2. Is there a critical summation which could
be made more accurate by judicious choice
of the order of summation?

3. Can the critical portion be rewritten
using higher precision arithmetic
in such a way as to improve accuracy?
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There are several handicaps in using interval arithmetic.

Widespread availability of the tool is nonexistant. However,

projects such as this one will help to alleviate this problem.

One can at least expect that the amount of ia~n storage required

to run the computation will double. This is a direct result

of converting REAL numbers to INTERVAL numbers, the size of the

INTERVAL II package itself (59K on the System 370), and the

overhead of AUGMENT generated calls on the package. For

example, the FFT benchmark run under normal arithmetic required

128K on the System 370. Under interval arithmetic, 254K was

required to run the program. The storage increase is observed

at approximately 100%, or double the amount. On the 11/70,

the FFT benchmark would not fit in storage for 512 input points

under interval arithmetic. It would, however, under normal

arithmetic. This is why FFT with only 2S6 input points was

run.

One of the more obvious penalties of using interval arithmetic

is that of increased CPU time. With the absence of hariware

instructions that perform the rtunding operations described in

[4], software must be written to simulate them. Every interval

arithmetic operation performed in INTERVAL II incurs the

overhead in CPU time requred to simulate the operation in

software. To get some idea of how dramatic this increase can

be examine Table 1. Using approximate figures, the System 10

increase is a factor of 27; on the System 370, a factor of 50,

and a factor of 2 on the PDP-11/70.
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Table 1

CPU Time kin seconds) for the FFT Benchmark Program

Normal Arithmetic Interval Arithmetic

System 10 3.97 105.9

System 370 10.06 471.2

PDP-11/70 32.60 72.4

* The time given includes that required for compiling, linking/loading,
and execution. For interval arithmetic, AUGMENT CPU time
is also included.

**FFT was processed for only 256 input points on the 11/70 due
to storage limitations. The other systems processed FFT
for 4096 input point*.
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This time on the 11/70 is shaded by the inordinate amount

of time it takes to task build. Ignoring this time, the increase

,in CPU time of interval arithmetic over normal arithmetic is a

factor of 10. This relatively small time factor on the ll/-0

is an indication of how slow normal arithmetic is on that

hardware anyway. This is very important if one considers the

BPA arithmetic primitives on this machine (multiply, divide,

and shift instructions had to be software simulated). Tables

2 and 3 give a breakdown of the figures in Table 1. The

dramatic increase in the System 370 CPU time is due in part to

the inefficiency of the BPA primitive'f noted in Part I. However,

there are many instances where the instruction set on the System

370 falls short in comparison to the System 10. For example,

handling a simple exchange operation on the System 370 takes

three instructions and only one instruction on the System 10.

As Dr. Yohe points out it is no longer regarded as an

"unpardonable sin" to have software inefficiencies, especially

considering the rate at which hardware prices are falling,

and " . the extra cost may seem small when balanced against

the possible failure of a structure [19]."

Analysis of the arithmetic results of running the FFT

benchmark program yielded the following observations. Since

only one set of input data was processed, it is not advisable

to pronounce the algorithm reliable as defined earlier. The

input data points range in -1 < x < 1 with a magnitude of
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Table 2

Individual Program CPU Times (in seconds) for FFT under
Normal Arithmetic

System 10 System 370 PDP-11/70

iortran Compiler .85 3.10 5.1s

Linker/Loader 1.38 1.00 23.42

FFT Processing .74 5.96 2.04

Total 3.97 10.06 32.6

Table 3

Individual Program CPU Times (in seconds) for FFT
under Interval Arithmetic

System 10 System 370 PDP-11/70

Augment Processing 16.77 22.19 16.77*

Fortran Compiler 1.48 5.85 7.41

Linker/Loader 1.96 3.58 27.01

FFT Processing 85.69 439.48 21.21

Total 105.9 471.2 72.4

* Augment on the DEC System 10 was used as a host processor.
See Part I.
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10° on FFT under normal arithmetic. The method of computing

the input data points using interval arithmetic produced

intervals no wider than .00121927610 on the System 370 and

.00012 2 07 0 3 10 on the System 10. FFT under normal arithmetic

generated complex numbers with a modulus of magnitude ranging

from 10" to 10- on the System 370, and 106 to 10". on

the DEC System 10. Under interval arithmetic, the widths of

the interval valued moduli were no wider than .00106130710

on the System 370 and no wider than .00067799510 on the System

10. Considering the magnitudes of moduli under normal arithmetic,

the widths of the intervals are not too encouraging. However,

the widths reported on above are the widest that occurred.

By far the majority of the output points had modulus interval

widths of magnitude 10-3 on the System 370 and 10-4 on the

System 10. Also, the output interval widths seem reasonable

considering the widths of the input intervals. This is

reassuring and would indicate that this particular FFT

algorithm is not sensitive to the sample test data.

Earlier, the term "acceptably narrow" intervals was

used in reference to determining data sensitivity of a given

computation. It can be observed from the discussion above

that exactly what is acceptable and what is unacceptable is

not clear cut. There exists a grey area where indecision may

occur. After experience is gained in using the tool, it might

be judicious to determine beforehand what an acceptable interval

5
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width would be, and then run the computation under interval

arithmetic.

Dr. Yohe supplied benchmark programs to test the performance

of the SIN, COS, and TAN routines. The results of running this

benchmark are available at WES, as are the results of running a

second benchmark program supplied by Dr. Yohe. These benchmarks

tested the mathematical functions using INTRAP for output. The

output was examined for consistency. As expected, the DEC

System 10 results were more accurate than the System 370.

However, both systems generate results that are agreeable in the

first seven significant digits. The input intervals staircase

up to a certain point, and then staircase down with the endpoints

of adjacent intervals overlapping. In a similar manner, the

output intervals slightly overlap on adjacent endpoints.

On the testing of EXP, the input interval [-l. x 10 , 0.1

generated distinctly different results on the System 10 and

System 370. The former produced an interval of [0,1], and

the latter produced an interval of [0, min 1. These results

are explainable in terms of the interval arithmetic coistants

for the System 370. The constant EXPMNA is valued at min on

the System 370 when it should be valued at -AE.AC4E 1 6 .

In constructing these constants it was not understood that

negative numbers were to be included in the meaning of the

term "smallest." The error is easy to correct.

55'A _s

- -- ~ -.-- - ------



9. Comparison of the Machines

As pointed out earlier, the hex point move on the fraction

causes results to be less accurate on the System 370, The

System 10 is more accurate than the 11/70 considering the

difference in the number of fraction bits in their internal

floating point representations. This pertains to both normal

floating point arithmetic and interval arithmetic. Aside

from accuracy comparisons, it is important to consider timing

relationships between the machines due to the extra cost

involved in using interval arithmetic.

The validity of timing comparisons in this section is

dubious considering the discrepancy that exists in the

efficiency of the BPA primitives. It should be noted that

the BPA primitives on the 1110 are very efficient compared

to those on these three machines. To observe this, one only

has to examine the instructions available on the 1110 used

to implement the primitives. This should affect timing

comparisons with the 1110.

Table 4 provides timing information for eight benchmark

programs that were run on all three machines. The table contains

for each mochine and each benchmark four CPU processing times

(in seconds)--AUGMENT processing, Fortran compiler processing,

linker or loader processing, and the benchmark processing

time (under interval arithmetic). AUGMENT processing time on

the 1'A70 is the same as for the System 10 since that machine
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Table 4

CPU Time (in seconds) for UT-Arlington Benchmark Programs

Augment Fortran Linker/ Program
Processing Compiler Loader Processing

INTERVAL II IBM 370 - 4.70 2.69 2.58
Test driver DEC '10 - .85 1.38 .74

PDP 11/70 - 6.11 40.44 1.45

Plat Map IBM 370 7.66 2.15 2.84 .31
Problem DEC 10 7.51 .89 1.38 .08

PDP 11/70 7.51 1.46 30.01 .12

Tnterval IBM 370 5.14 .83 2.64 3.26
9actorial DEC 10 5.93 .46 1.38 1.31

PDP 11/70 5.93 .45 30.23 2.11

128 IBM 370 5.75 1.11 2.54 10.68
ii DEC 10 5.93 .31 1.38 2.47

PDP 11/70 5.93 1.21 26.46 10.55
i-0

40 IBM 370 6.63 1.23 2.90 .65
2 DEC 10 6.12 .36 1.36 .19

xi- xi1 PDP 11/70 6.12 1.30 25.00 .33
i 2

Roots of IBM 370 7.52 1.90 3.07 2.25
Quadratic DEC 10 7.42 .58 1.40 .57

PDP 11/70 7.42 2.20 26.04 2.04

Mathematical IBM 370 7.40 2.23 2.87 18.18
Programs DEC 10 6.56 .55 1.38 9.48

PDP 11/70 - 56 3.05 25.24 20.02

SIN, COS IBM 370 6.97 1.66 2.98 1.92
and TAN DEC 10 6.44 .40 1.53 .77

PDP 11/70 6.44 1.56 24.4 1.51

Total IBM 370 47.07 15.81 22.53 39.83
DEC 10 45.91 4.4 11.19 15.61
PDP 11/70 45.91 17,34 227.82 38.13
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was used as a host processor. The table summarizes the four

processing times via a total for each system.

Examining AUGMENT time, it can be observed that thert is

not an appreciable difference between the System 10 and the

System 370. On all other figures, however, the System 10

CPU time is significantly less. The System 10 compiler,

linking/loading operation, and benchmark time are all at

least half that of the System 370 and the PDP 11/70. The

KL10 processur and software system are undoubtedly faster than

the System 370/155 operating under OS/Mv'r. The high linker/loader

time on the 11/70 is probably die to the fact that only one

disk is configured into the system.
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10. Recommendations and Conclusions

Using interval arithmetic as prescribed in the INTERVAL

II package is simple because of the AUGMENT preprocessor.

Computer runs illustrate that interval arithmetic can show the

instability of an algorithm for a given set of data.

Thoughtful use of PRINT statements and interval arithmetic can

reveal sensitive parts of an algorithm. On the other hand,

use of interval arithmetic can establish a high level of

confidence in an algorithm for a given set of data. Proper

testing with representative data sets can establish algorithm

reliability. There is a peralty of increased CPU time and

main storage requirements in using interval arithmetic.

The DEC System 10 appears to be the superior machine

taking all factors into consideration (ie., time, storage,

accuracy). The System 370 appears to be the worst machine

considering the accuracy of results because of the hex point

move on the fraction.

Definite problem areas are: storage limitations of the

11/70; confidence in the results of the interval package; and

- interpretations of the interval widths when the decision is

not clear cut.

Specific areas for further work besides the obvious ones

of continued benchGark testing and more experience in using

the tool include the following:
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I. Some computer-assisted training modules should be
prepared to provide ready instruction on how to use
AUGMENT and the INTERVAL package.

2. A validation package should be constructed that canbe used to verify the correctness of the INTERVAL IIpackage with its primitives.

3. Requirements exist for a double precision interval
arithmetic package. These requirements should be
considered to determine whether or not to implement
such a package.

4. Similar to item 3, except the requirements are for
a compleN interval type.
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PART III: EVALUATION OF BENCHMARK ALGORITHMS
USING INTERVAL ARITHMETIC

l. Introduction

This work is a continuation of the efforts described in Parts

I and II. WES benchmark programs GAUSE, BANSOL, SESOL, and SPLINE

have been processed under normal arithmetic and interval arithmetic

on three systems--the DEC System 10, IBM System 370, and DEC

PDP-Il/70. Here, we report on accuracy, storage requirements, and

timing of these benchmarks and make recommendations and conclusions.

Summary Remarks

* Interval arithmetic should be used (as any tool would be)
where accuracy is of critical importance.

* Because of the known numeiical stability of Gaussian pro-
cedures in linear equation solving, the use of interval
arithmetic is not recommended in the case of ioutines
GAUSE, BANSOL, and SESOL.

* If accuracy is of critical importance, the back substitu-
tion portion of Gaussian elimination should be considered
data sensitive because of the summations involved.

Interval arithmetic is expensive to use in terms of com-
Sputer time, main storage, and personnel time spent in• . error analysis.

Some reasonable means of estimating the cost of using in-
terval arithmetic in a given situation should be developed.
These costs would bc important in the decision process of
determining whether or not interval arithmetic would beworth the effort or not.

Techniques of accuracy extension on short word length

machines should be examined, in particular the extended
precision package discussed in [20].
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12. Benchmark Accuracy

The approach taken in accuracy determination was to process the

given benchmarks in normal arithmetic and then under interval arith-

metic. The interval results were checked to insure they contained

the normal arithmetic results. The widest interval widths were com-

puted as well as the average width for each benchmark. These re-

sults are given in Table S.

Table 5

WES Benchmark Accuracy

Benchmark Result Range Widest Interval Average Width

SPLINE

S/370 100 - 102 0.1062012E-01 0.4344657E-02

S/10 100 - 102 0.1118898E-02 0.4972159E-03

11/70 100 - 102 0.3030777E-02 0.1414956E-02

GAUSE (100 x 100 set of data)

S/370 10-6 - i1-l 0.6205976E-02 0.4425270E-03

S/10 10-6 - 10"1 0.3089159E-03 0.2275300E-04

The question then arises as to whether or not the interval

widths are acceptably narrow or not. Considering the numerical sta-

bility of Gaussian procedures, and the results ranges, the intervals

are probably acceptable. The interval programs used were natural

extensions of the normal arithmetic programs. No effort was made to

eliminate dependencies that occur in the interval package. Other-

wise, the interval widths would even be smaller. Without a specific
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situation to consider, it is hard to say for sure whether or not

the widths are acceptable.

Because of the known numerical stability of Gaussian proce-

dures, we recommend that interval arithmetic not be used in the

case of these benchmarks. However, interval arithmetic should be

used even in this case if accuracy is of critical importance. This

is because the order in which the terms of a summation are added

can affect the accuracy of a result, and the back substitution pro-

cess of Gaussian elimination can be data sensitive. This is a pos-

Lible failure point within these benchmarks.

One other remark on accuracy is important. The 100 x 100 set

of data processed through the Gaussian procedures generated the

interval widths given in Table 5. However, if one compared the

solutions, they were distinctly different! How can this discrep-

ancy be explained considering that the interval widths are accept-

ably narrow? The answer Jics - the fact that an interval input/

output package was not used in reading in the 100 x 100 data.

Since the inputs were not properly bounded, we essentially solved

separate systems on the different machines. This example high-

lights the importance of having an interval I/0 package.

Benchmark Timing

Interval arithmetic is expensive to use in terms of CPU time.

This is because every interval operation incurs the overhead in

CPU time required to simulate the operation in software. To see

how significant these times are, consider the figures in Table 6.

For each benchmark, on each system, CPU times are given L£r each

program under both normal arithmetic and interval arithmetic.

Also given in Table 6 are factors of increase in CPU time iL going
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Table 6

Timing (in seconds) of WES Benchmark Programs

Benchmark/-
System Augment Compiler Loader Program Total Increase

SPLINE

S/370
Normal - 1.72 0.95 0.16 2.83 7
Interval 9.95 2.82 3.02 2,72 18.51

S10
Normal - 0.48 0.33 0.08 0.89 12
Interval 8.8z 0.88 1.43 0.60 11.49

11/70
Normal - 2.00 12.40 0.0S 14.45 3
Interval 8.85 3.15 25.41 2.16 39.30

SESOL

S/370
Normal - 8.54 0.98 2.84 12.36 5
Interval 44.12 13.14 3.77 3.87 64.9

S/lO
Normal - 2.25 0.45 0.53 3.23 11
Interval 29.83 3.25 1.58 0.70 35.36

11/70
Normal - 14.3 - 0.13 14.43
Interval 29.83 18.23 - (Would not fit in storage)

GAUSE

S/370
Normal - 3.92 1.01 0.39 5.32 6
Interval 22.25 5.81 3.14 3.04 32.24

S/l10
Normal - 1.08 0.40 0.13 1.61 13
Interval 17.33 1.95 1.61 0.24 21.13

11/70
Normal - 6.40 13.51 0.15 20.06 2
Interval 17.33 10.26 20.16 0.56 48.31

GAUSE (100 x 100)

S/370
Normal - 3.68 1.00 14.82 19.50
Interval 22.09 5.77 3.12 25:08.16 25:39.14

S/10
Normal - 1.03 0.38 8.45 9,86
Interval 17.03 1.60 1.53 8:45.00 9:05.16
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from normal arithmetic tc interval arithmetic. Using approximate

figures, the DEC System 10 increases by a factor of 12, the System

370 by a factor of 6, and the PDP-11/70 by a factor of 3.

Benchmark Storage

Another handicap in 'sing interval arithmetic is that one can

expect the amount of main storage required to double. Table 7

contains the storage requirements fnr the benchmarks on the

System 370 and PDP-1/70.

Table 7

Storage Requirements of WES Benchmarks

GAUSE
(100 x 100

SPLINE SESOL GAUSE Set of Data)
S/370 TT7f S/37 T 11/70 S/71 ;7 S/370

Normal 30K 10K 52K 16K 36K 11K 74K
Interval 100K 22K 128K >32K 108K 25K 224K

Increase 3 2 2 2 3 2 3
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13. Conclusions and Recomw,'ndations

A problem area that remains is the lack of some quantitative

nmeans of determining the costs of using interval arithmetic on a

given system. From the results of this Part and those in Parts I

and II, one can estimate CPU time and main storage requirements

for interval arithmetic if those figures are known for normal

arithmetic. However, the costs of writing other than a natural

interval extension program should be estimated. This would re-

quire programmer time in the elimination of interval package de-

pendencies. Also, numerical a.aalysts' time should be estimated

in determining roundoff error and trunction error. This would

leave inherent error as the essential error source, and interval

widths could be appropriately evaluated.

Techniques of accuracy extension on short word length ma-

chines such as [, should also be considered.
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The following are additional computer listings and runs, for

all three computer systems dealt with in the report, they are

available from the Automatic Data Processing Center, U. S. Army

Engineer Waterways Experiment Station, P. 0. Box 631, Vicksburg,

Miss. 39180:

AUGMENT Machine Dependent Primitives
Interval II Machine Dependent Primitives
Interval II Machine Dependent Constants
Test Driver for Interval II (supplied by Dr. Yohe)
Test Driver for AUGMENT Primitives (supplied by Dr. Crary)
Factorial Problem
Dr. Yohe's Plot Map Problem
FFT (using normal and interval arithmetic)
Summation of (1/X)**I, I=O,...,128
Roots of a Quadratic Equation
Rounding and Truncation Errors in Addition
Test of SINE, COSINE, and TANGENT Routines
Test of Mathematical Functions
Matrix Inversion
Gaussian Elimination with Partial Pivoting
Gaussian Elimination with No Pivoting
SPLINE

SESOL
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APPENDIX A: REMARKS ON SOME ITEMS

NOTED IN THIS REPORT

by Dr. Fred D. Crary

The list of remarks that follows is keyed to the main text of

the report. Paragraph 1 is the first paragraph beginning on the

page. Line 1+ is the first line on the page, I- is the last line,

[ n+ is the n-th line from the top, and n- is the n-th line from the

bottom of the page.

Page 7, para 1: The syntax errors were caused by our faulty key-
punching from a correct listing. The implementation of ORDER
for the 370 version was suggested by a 370 user. The various
"IF's" in the documentation of STRWDS suggested possible im-
plementations of string cells and gave the formulas under
these implementations; this description will be revised.

Page 7, para 2: The difficulties with routines MAIN and MOVNUM
will be corrected in Version 4L by inserting STOP statements.
STOP statements will also be inserted at other points where
the called subprogram does not return.

Page 9, para 2: The constant 4250000 was intended to be approxi-
mately the largest x such that 10x+9 did not overflow. It
appears to have been incorrectly computed (even for full-word
integers). Dr. Ward is correct in concluding that this is an
overflow test.

Page 9, para 4: The decision table columns other than 12 are for
nonoperators and operators which require special handling.
Column 12 is for all "normal" single character operators. It
happens that "/" is the only standard operator that does not
require special handling. If other such operators are de-
fined via the Description Deck, they are allocated to Col-
umn 12 also.

Page 10, line 3-: This will be changed to IF C---) J - +1 in
Version 4L.

Page 11, line 2+: These warning messages are reasonable responses
to the use of the DO index as an argument to a subroutine.
In no case is the index altered by the subroutine.

Page 13, line 3-: An attempt will be made to remove the apparent
recursion noted.

Page 16, para 1: There is no problem with DOISN because the in-
ternal statement numbers begin counting with zero in each
program unit and it seems unlikely that 32,000 of them will

Al
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be needed. There is a possible problem with DOESN; however,
this should be caught by the (corrected) overflow test in
NUMIN.

Page 19, para 3: Some additional specifics on the tuning desired
would be useful.

Page 31, lines 8+ and continuing: It seems as though this problem
is easily solved. If the supporting package is written as-
suming REAL arrays of length 2, simply describe the package
to AUGMENT with a "DECLARE REAL (2)" clause rather than
"DECLARE COMPLEX".

Page 32, lines 1+ and continuing: ANSI FORTRAN does not recog-
nize tab characters; thus, no provision was made to include
them in AUGMENT. EQUIVALENCE and DATA statements are not
processed because it is difficult (if not impossible) to de-
termine what effect is intended in all cases. Similarly, the
interaction between I/O statements and FORMATs is very diffi-
cult to unravel. This is especially true with an essentially
one-pass preprocessor.

Page 34, para 1: This observation is inherent in interval arith-
metic. If an interval always had an unambiguous sign,
AUGMENT would permit the three-branch IF (see pages 54, 62,
and 90 of the AUGMENT User Documentation [1]).

Page 35, para 1: This seems to be an overzealous compiler. Is
this a warning or a fatal error?

Page 39, para 1: This problem is due to some side effects on the
symbol table during the scan of I/O lists for nonstandard
variables. The side effects occur only in some cases. A
correction is already available and will appear in Version 4L.
An interim solution is to use copy mode for all I/O statements
(see page 34 of the AUGMENT User Documentation [I]).

Page 39, para 2: The facility requested already exists in the
SOURCE option control (see page 30 of the AUGMENT User Docu-
mentation [1"). See the output of the test deck supplied
with AUGMENT for an example of the output obtained. (A copy
of the test deck output is on each microfiche with the
AUGMENT revision.)

This comment raises a question ab3it debugging. Do we nor-
mally inspect the machine language output of the FORTRAN
compiler in order to debug FORTRAN programs? Is this not a
similar situation?
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